Influence of Biochar Additions on Net Greenhouse Gas Production

Kurt Spokas ¹ and Don Reicosky ²

1 – USDA-ARS, Soil and Water Management Unit, St. Paul, MN 2 – USDA-ARS, North Central Soil Conservation Laboratory, Morris, MN

Biochar Research

Benefits of biochar additions to oxisol soils are known

➤ What happens for other soils with the addition of biochars?

Biochar Research

Part of new ARS multi-location
 Biochar and Pyrolysis Initiative

•6 ARS locations:

Ames, IA; Kimberly, ID; St. Paul, MN; Big Spring, TX; Florence, SC; Prosser, WA.

- Fast pyrolysis char used in replicated field plots
- Continuous corn (same crop for comparison)
- In addition to following crop yield and soil carbon:
- ✓ Soil gas concentrations and trace gas fluxes
- ✓ Seedling Emergence/Initial seedling growth rates

Rosemount Biochar Field Trials

Small scale triplicate plots (16' x 16')

Largely due to the limited availability of biochar.

(Application rate: 20,000 lbs/acre)

- •Fast pyrolysis biochar (sawdust, CQuestTM Dynamotive¹)
 - •With and without manure addition (5,000 lb/acre)
- •Slow pyrolysis biochar (woodchip, Best Energies¹)
- •Slow pyrolysis biochar (macadamia nut, Biochar Brokers¹)
- •Slow pyrolysis updraft gasifier (wood pellets, Chip Energy¹) [Fall 2009]
- Larger strip plots (16' x 93')
 - •Hardwood charcoal (ground lump charcoal, Kingsford¹)
 - •Slow pyrolysis biochar (macadamia nut, Biochar Brokers¹)
 - •3 rates: 5,000, 10,000 and 20,000 lb/acre

1-Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.

Laboratory Studies

- Overview:
 - > 24 different biochars evaluated
 - > 11 different biomass parent materials
 - Represents a cross-sectional sampling of available "biochars"

C content 1 to 84%

N content
0.1 to 2.7%

Production Temperatures 350 to 850 C

BC#	Parent Material	Source	Pyrolysis Temp (°C)	С	N	0	Ash	Surface Area (m² g-¹)
1	Corn stover	Best Energies	815	45	0.5	1	55	4.4
2	Pine wood chip	EPRIDA	465	75	0.3	9	6	0.1
3	Peanut hulls	EPRIDA	481	59	2.7	12	15	1.0
4	Corn stover	R. Brown – Iowa State	500	25	0.6	5	69	4.2
5	Corn stover	EPRIDA	410	42	1.0	11	54	2.2
6	N/A	Char C Group (Biosource™)	465	43	2.2	N/A	N/A	63.5
7	Turkey manure Woodchip	SWROC-Univ. of MN	850	1	0.1	3	89	4.8
8	Hardwood	D. Laird (USDA-ARS)	N/A	69	0.7	9	14	19.2
9	Dina waadahin	EPRIDA	465	71	0.2	11	9	0.2
10	Pine woodchip Peanut hulls	EPRIDA			0.2		15	
4			481	60		10		286
11	Corn stover	EPRIDA	505	66	1.2	4	54	17.3
12	Corn stover	EPRIDA	515	51	1.0	0	74	9.9
13	Coconut shells (Activated)	Willinger Bros.	450	83	0.4	0	12	960
14	Woodchip (pellet)	Chip Energy	650	69	0.2	20	6	63
15	Hardwood lump charcoal	Kingsford	538	53	0.4	10	27	7.2
16	Macadamia shells	Biochar Brokers (EternaGreen™)	N/A	84	0.6	2	2	0.4

18 3

.283

BC#	Parent Material	Source	Pyrolysis Temp (°C)	С	N	0	Ash	Surface Area (m² g-1)
17	Distillers grain (ethanol plant residues)	Illinois Sustainable Technology Center (ISTC)	350	N/A	N/A	N/A	N/A	N/A
18	Distillers grain (ethanol plant residues)	ISTC	400	N/A	N/A	N/A	N/A	N/A
19	Corn cob	ISTC	350	N/A	N/A	N/A	N/A	N/A
20	Corn cob	ISTC	400	N/A	N/A	N/A	N/A	N/A
21	Wood waste (mixed)	ISTC	400	N/A	N/A	N/A	N/A	23
22	Wood waste (mixed)	ISTC	500	N/A	N/A	N/A	N/A	27
23	Algae	Univ. of MN	Hydrothermal carbonization	N/A	N/A	N/A	N/A	0.11
24	Sawdust	Dynamotive (CQuest™)	550	61	0.2	11	20	46

Weathering impact

BC#	Parent Material	Pyrolysis Temp (°C)	С	1	N	0	Ash	Surface Area (m ² g ⁻¹)
3	Peanut hulls (fresh)	481	59)	2.7	12	15	1.0
10	Peanut hulls (weathered)	481	66)	0.9	10	15	286

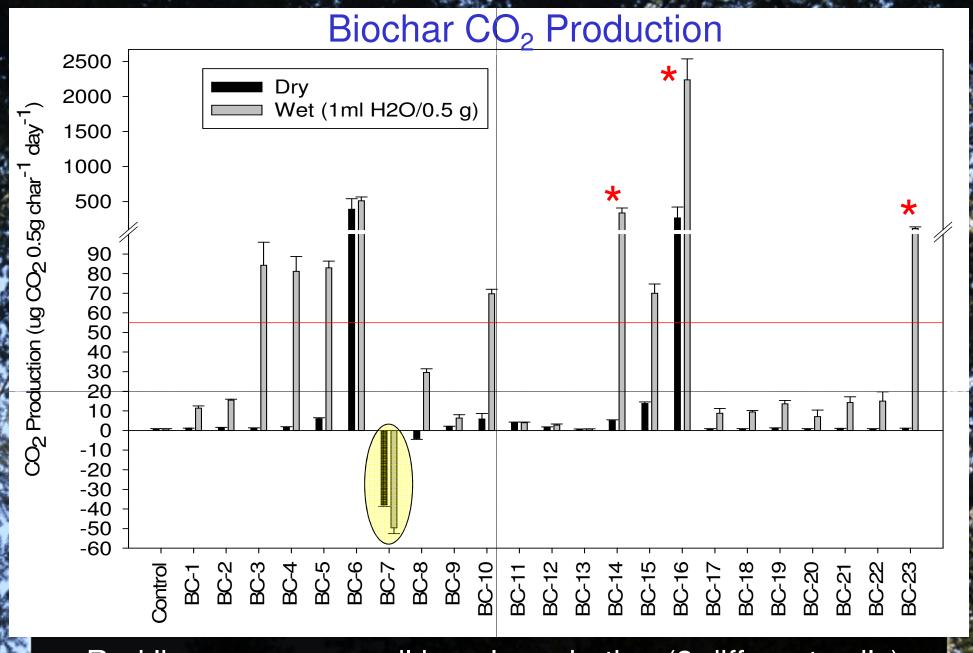
Weathered char (1 yr on outdoor storage pile):

- Minor changes in composition data
 - Loss of N → would indicate N is available
- Major change in surface area (286 times)

Laboratory Incubations

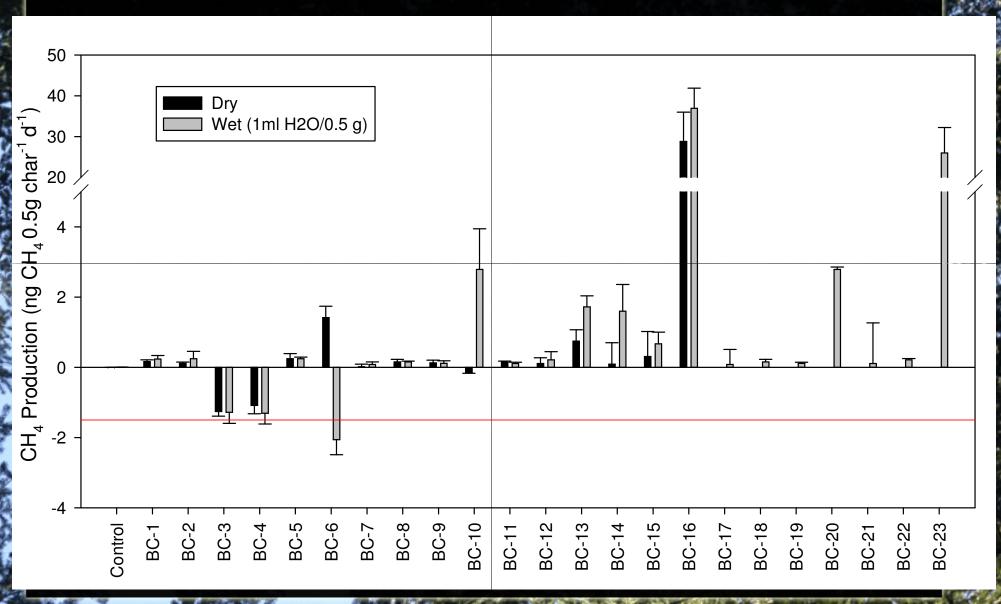
Soil incubations used to assess the impacts of these 24 different biochars with soils from 3 different ecosystems:

- Minnesota agricultural soil
 - Waukegan silt loam
- Wisconsin forest nursery soil
 - Vilas loamy sand
- California landfill cover soil
 - Marina loamy sand

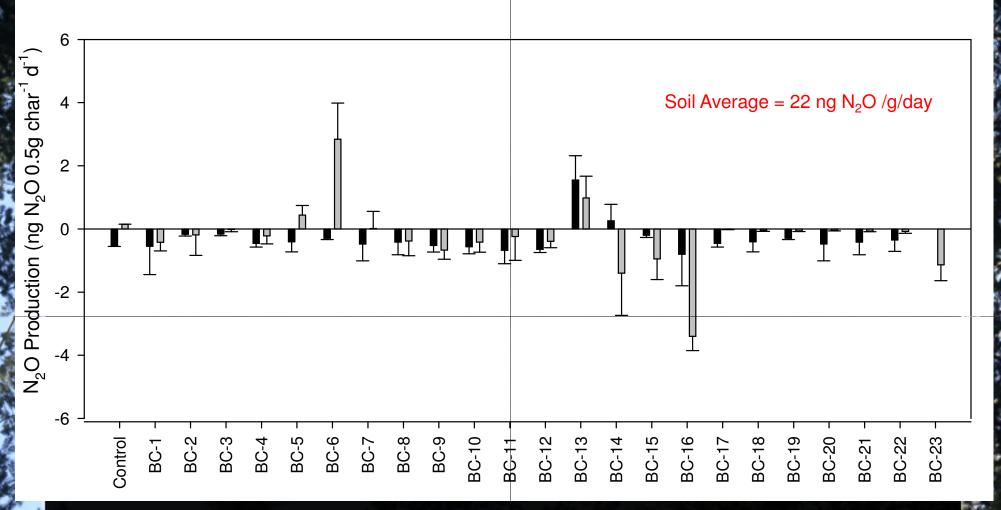


Triplicate Incubation Set-up

Set #	Biochar Amount (g)	Soil	Water (mL)
1	0.5	None	0
2	0.5	None	1.0
3	0.5	Agricultural soil (5g)	0.74
4	0.5	Forest nursery soil (5g)	0.60
5	0.5	Landfill cover soil (5g)	1.24
6	None	Agricultural soil (5g)	0.74
7	None	Forest nursery soil (5g)	0.60
8	None	Landfill cover soil (5g)	1.24
9 (Control)	None	None	1.0


Assessment of Gas Production

- 5 g of soil mixed with 0.5 g biochar (10% w/w)
- Headspace periodically monitored with GC/MS
- 10 day pre-incubation
- Production rates estimated from the change in concentration with time.
- Length of incubations 25 100 days
- Requirement: O₂ concentrations >15%

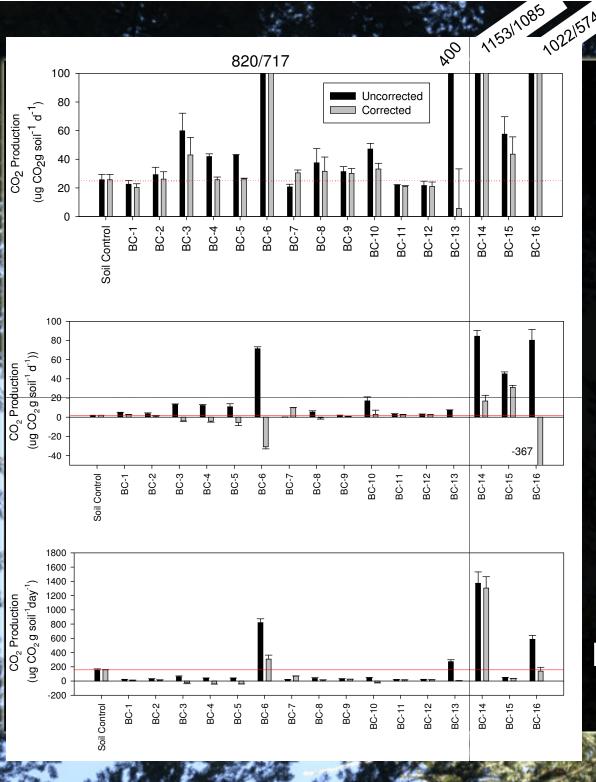


Red line = average soil basal respiration (3 different soils) 9 above and 14 below soil average

Methane: Biochar alone

N₂O: Biochar alone

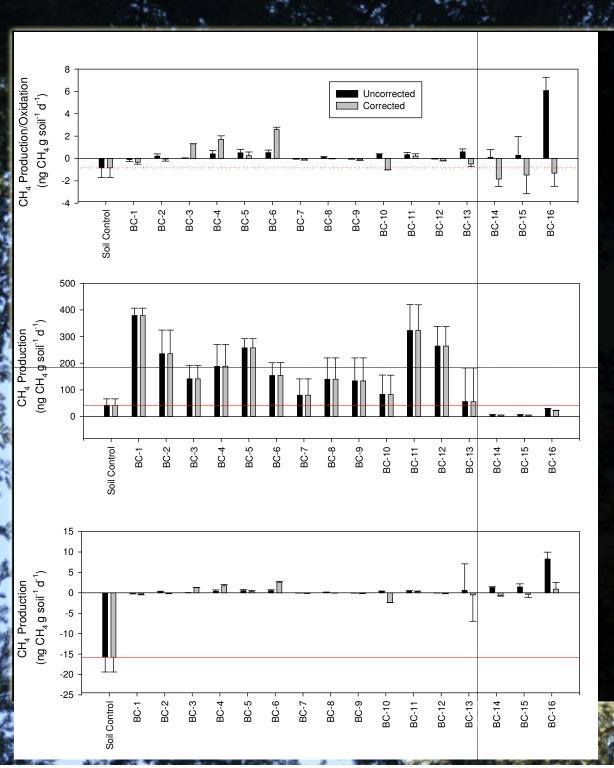
Only 4 biochars were significantly different than control (no char) – 1 produced N₂O and 3 consumed N₂O (sorption or denitrification?)


Correction for Biochar production

CO₂Production Rate Corrected =
$$\frac{\left(CO_2^{biochar+soil} - CO_2^{biochar}\right)}{5g_{soil}(t_d)},$$

 $CO_2^{biochar+soil}$ is the total CO_2 production from the soil + biochar + water incubation (µg CO_2) at time t_d

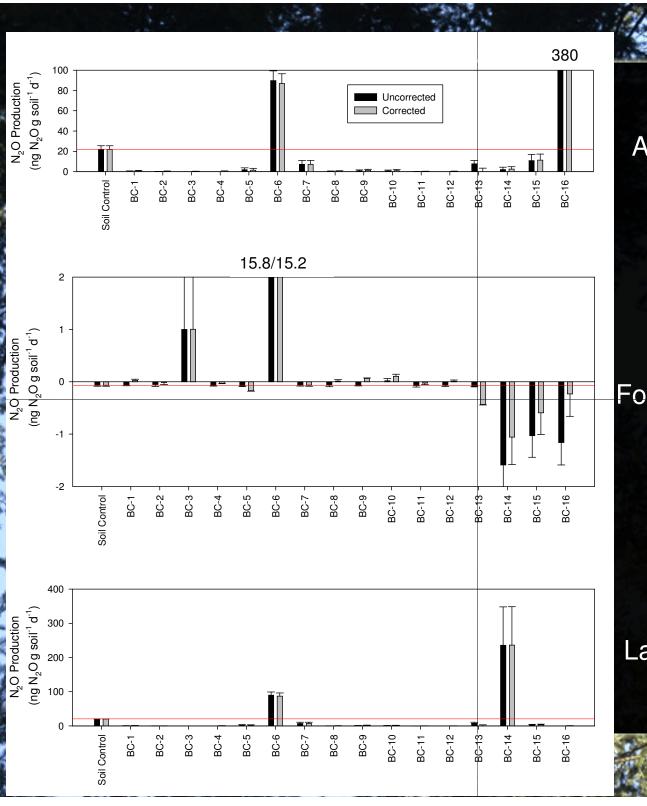
 $CO_2^{biochar}$ is the total CO_2 production (µg) at time t_d for the biochar + water incubation


t_d is the time of sampling (days)

CO₂
Agricultural Soil

Forest Nursery Soil

Landfill Cover Soil

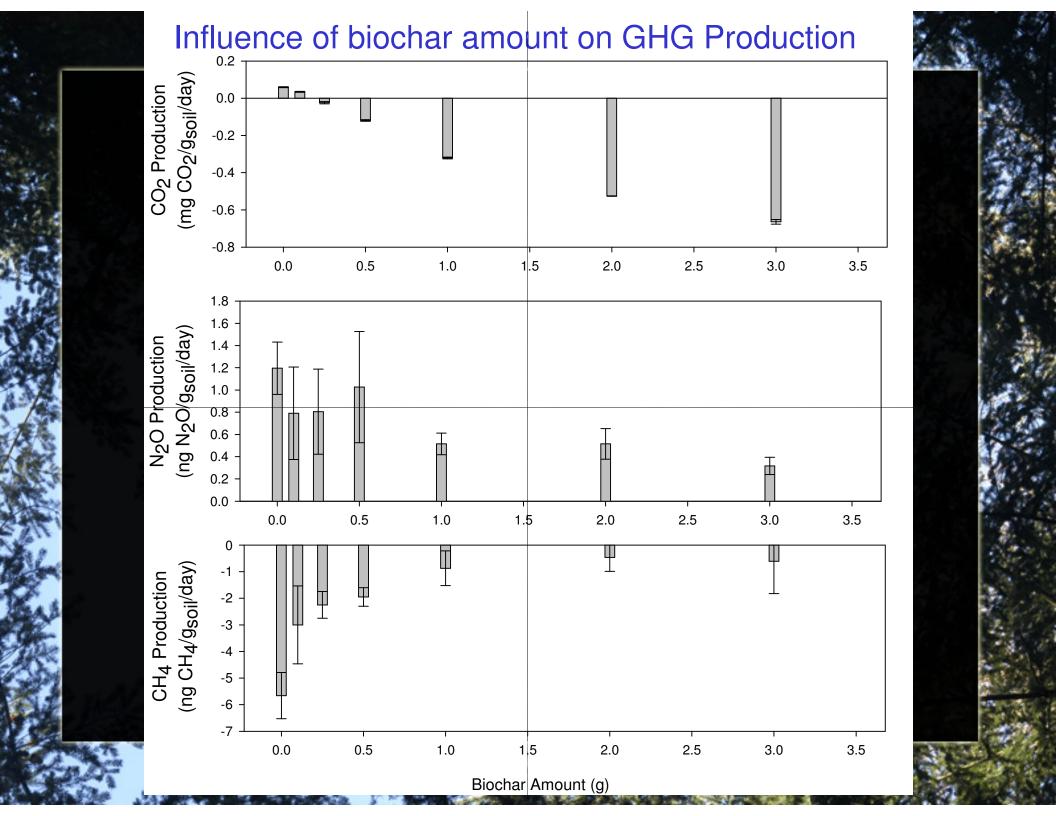


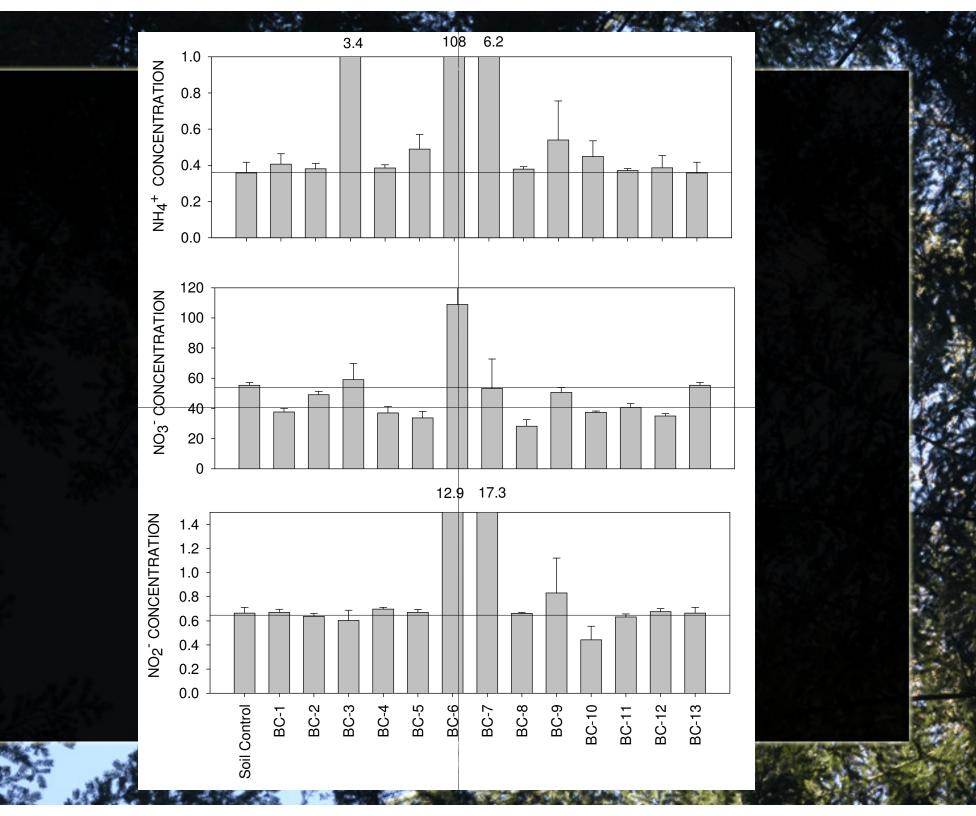
 $\mathsf{CH}_{\scriptscriptstyle{4}}$

Agricultural Soil

Forest Nursery Soil

Landfill Cover Soil

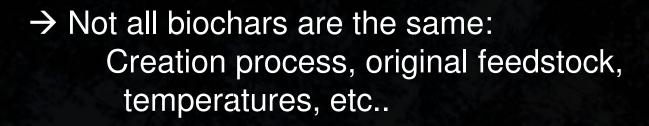



 N_2O

Agricultural Soil

Forest Nursery Soil

Landfill Cover Soil



Conclusions

- Positive effect observed so far in laboratory
 - Reduction in N₂O production potential
- Besides BC-14; No consistent trends in CO₂ effects across soil types
 - Majority <u>reduced</u> basal CO₂ respiration
 - BC-14 (wood pellet aerobic char) increased CO₂ production across all soils
- Majority of biochars <u>reduced</u> CH₄ oxidation activity
 - Soil methanotrophs are the only known biological sink for atmospheric methane
 - Also <u>reduced</u> methanotroph activity (CH₄ production)

Conclusions

→ Greenhouse gas production:
Complicated by biochar production, release, or sorption – this is particularly important for CO₂

→Overall, greenhouse gas impacts function of both char and the soil

Acknowledgements

We would like to acknowledge the cooperation:

Dynamotive Energy Systems

Fast pyrloysis char (CQuest™) through non-funded CRADA agreement

Best Energies

Slow pyrolysis char through a non-funded CRADA agreement

Illinois Sustainable Technology Center (ISTC) [Univ. of Illinois]

Biochar Brokers

Chip Energy

Technical Support:

Martin duSaire, Tia Phan, Lindsey Watson, and Lianne Endo